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Abstract
A granular assembly composed of a collection of identical grains may pack
under different microscopic configurations with microscopic features that are
sensitive to the preparation history. A given configuration may also change
in response to external actions such as compression and shearing. We show,
using a mechanical response function method developed experimentally and
numerically, that the macroscopic stress profiles are strongly dependent on these
preparation procedures. These results were obtained for both two and three
dimensions. The method reveals that, under a given preparation history, the
macroscopic symmetries of the granular material is affected, and in most cases
significant departures from isotropy should be observed. This suggests a new
path towards a non-intrusive test of granular material constitutive properties.

(Some figures in this article are in colour only in the electronic version)

Particular attention has been devoted to the study of the static properties of granular assemblies
over the past 15 years [1]. In that regard, a now famous and paradigmatic example is that of
the stress distribution under a pile of sand. Depending on the manner in which this pile is built,
different pressure profiles are measured. For example, when the material is poured from a point
source, e.g. a hopper, then a stress ‘dip’ occurs at the base, under the apex of the pile [2–4],
whereas when the material is poured in a rain-like procedure only a slight ‘hump’ occurs [4]. In
this context, a discussion on the nature of the equations governing the distribution of stresses in
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granular media has emerged [5–7]. The proposition of hyperbolic equations [8–10] as opposed
to the elliptic equations of elasticity led to the need for newer more discriminating tests. These
typically involved determining the stress response to a localized force for a slab of grains (the
response function). The initial motivation was that the hyperbolic equations predict a double
peaked response (a ring in 3D) which would contrast with a single peaked profile expected for
elliptic equations out of isotropic elasticity. It is now clear that, for generic granular assemblies
made of rough grains, an elastic description using elliptic equations is most likely correct [11–
13]. But it is important to note that this need not be the case for samples prepared in the specific
case of isostaticity (see [14–18] and references therein).

One interesting outcome from the previous studies is the fact that, as the layer geometry
is simpler than that of the pile, this stress response is a powerful tool to explore the effects of
preparation procedures and details of the microstructure. The ultimate goal is to be able to
link the response profiles to the internal texture of the packing. For instance, the microscopic
texture of the packing is quite sensitive to the details of external actions such as pouring and
shearing. One would like to have a probe of this structure which determines the effective
elastic properties.

In this paper, we focus on the sensitivity of stress response profiles to the system
preparation. First, we give a summary of recent experimental measurements on two-
dimensional packings made of photoelastic grains [12, 19]. Then, in the second section,
we show a series of experiments on three-dimensional piling [11, 20]. In the third section
we present new data obtained from numerical simulations of granular layers. All these stress
profiles and the impact on future investigations are finally discussed in the conclusion.

1. Two-dimensional photoelastic experiments

Experiments were carried out on 2D granular systems consisting of discs and pentagonal
particles that were cut from a photoelastic material. In these experiments, it was possible to
measure forces on individual particles internally—hence the significant value of the approach.
In principle, it is possible to directly obtain the forces at contacts by solving an inverse problem
for the stress fields internal to the particles that satisfy the patterns seen in photoelastic images.
This is a formidable task to carry out for large collections of particles. Hence, we chose a
simpler approach in which we calibrated the mean force applied to a particle to the gradient
of the image intensity associated with that particle. Specifically, we determine the mean force
versus G2, where G2 is the integral of the square magnitude of the gradient of the image
intensity, integrated over a particle. The justification for this approach is contained in [12, 19].

We then carried out a series of experiments with the following general approach. We
created nearly vertical stacks of particles that were supported very slightly by a vertical
glass plate. With this arrangement, the friction force between particles and the plate was
tiny. Necessarily, this approach caused some gravitational gradients in the sample, which
we removed during the subtraction process described next. Typical sample sizes contained
roughly 1000 particles and the sample was usually about twice as wide as it was deep. Each
experiment then consisted in the following: (1) a sample was prepared as above; (2) images
with and without polarizers in place were obtained; (3) a point force was applied and a third
image was obtained; (4) the point force was removed and a fourth image was obtained to see
if there were shifts in the positions of the particles. Generally, we rejected an experiment if
there were shifts in the particle positions between the first and fourth images. We then took
the difference between the images with polarizers in place with and without the applied force.

This then yielded an experimental approximation to the response function. It is not
a priori manifest that there is a linear regime available in these experiments. However, we
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Figure 1. Force distribution in a two-dimensional packing of photoelastic grains in response to a
localized force at the top (the gravitational part has been subtracted). Darker zones indicate larger
stresses. Chain-like structures are clearly visible.

were able to identify such a regime in all cases, and we restricted our observations to this
linear regime. An additional point is the fact that for any given set of macroscopic conditions,
such as types of particles, and friction, any given realization was unique, as shown in figure 1.
Only by obtaining an ensemble of responses was it possible to generate the mean response
function. Throughout these experiments, we generated ensembles of typically 50 different
realizations for each set of conditions. These data also yielded information on the variance
of the distribution, and hence the range of local outcomes that one might expect for a given
experiment. In these experiments, we considered a variety of different conditions. Specifically,
we considered ordered hexagonal and square packings, for which we varied the particle friction
coefficient, and we considered completely disordered packings of pentagons. In the last case,
we considered controlled amounts of disorder through bi-disperse packings of discs. In most
of these experiments, we considered weakly compressed states (compressed due to gravity)
and, in one set of experiments, we explored the effect of modest amounts of shear.

Here, we focus on only two issues, namely the role played by spatial order within the
sample, and the effect of modest shear on force transmission. The effect of order is highlighted
by parts (a) and (b) of figure 2. The left side of this figure shows the force response in a spatially
ordered hexagonal packing of particles, and the middle panel shows data for pentagons. In the
ordered case, transmission occurs chiefly along the lattice directions of the packing, with some
friction-dependent widening with depth. This is consistent with the general predictions of
anisotropic elasticity [13, 21–23], but experimental limitations could not rule out predictions
of hyperbolic models for a weakly disordered system [24]. The case of the pentagons shows
a single peak that broadens linearly with depth, consistent with an elastic-like picture. The
linear broadening with depth is not consistent with a diffusive-like model, such as the q-
model [25, 26]. The right panel of this figure shows the response to a normal force applied
to a sample that has been subjected to a 5◦ simple shear deformation. The shear sets up a
strong network of force chains that align along a direction of 45◦. Indeed, along this direction,
a force–force correlation function suggests long-range ordering, limited here by the sample
size. And, interestingly, the force response is most strongly refocused to a direction of about
22◦ with respect to the vertical direction.
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Figure 2. Stress response averaged over ∼50 trials like that of figure 1. The shape of this response
shows two lobes for a regular packing of circular monodisperse beads (left), but only one lobe
(middle) when the layer is disordered (pentagonal particles). When the layer is sheared beforehand,
the response is skewed in the direction of the shearing (right). The typical height of these pictures
is 15–20 grain diameters.

In these experiments, we exploited the power of birefringence in polymeric materials,
to directly show the decisive influence of local granular organization on the macroscopic
mechanical properties of a granular piling. As evidenced by the mean response to a localized
force, this method reveals a connection between local symmetries of the contact forces and
macroscopic anisotropy. On the other hand, the birefringence method is restricted to 2D. Thus,
it is important to see whether the effects displayed in 2D would persist for a more conventional
granular packing such as sand. This is the purpose of the following section.

2. Three-dimensional experiments

A priori, the assessment of the stress response to a small localized force in 3D is a challenging
experimental question. First, there is no easy way to directly probe stresses in the bulk. Second,
the direct estimation of stresses at the boundaries, especially the bottom boundary, puts us in
a situation where the measured stress signal would always be overwhelmed by the hydrostatic
pressure. The method that we employ here to determine the small force response in the large
hydrostatic background is based on a lock-in detection of the stress response to a slightly
modulated signal added to the main localized force. This turns out to be extremely sensitive
and able to discriminate the response part of the signal [11, 20]. We also checked explicitly
that the responses obtained are restricted to a linear regime.

An interesting test of our method is provided by the study of a model elastic material such
as gelatine with a known Poisson ratio ν = 0.5. It is first important to note that the necessary
presence of boundaries for all practical purposes is an element that needs to be considered
explicitly in an elastic analysis. In the case of the stress profiles of an isotropic semi-infinite
slab, the response function is solely dependent on the spatial dimensions, but this nice property
is lost for finite depth elastic layers. For example, boundary roughness and Poisson ratio appear
directly in the isotropic elasticity solution [20]. The gelatine results are plotted in figure 3.
The data have been rescaled by the thickness, h, of the layer and by the amplitude of the extra
force. The comparison to isotropic elasticity is excellent. Note, however, that the sensitivity of
the response to the exact value of the Poisson coefficient is not particularly high; for instance,
solutions with ν = 0.27 and 0.5 show very similar shapes.



Sensitivity of the stress response function to packing preparation S2395

0.0 0.5 1.0 1.5
rescaled horizontal position r/h

0.0

0.2

0.4

0.6

0.8

re
sc

al
ed

no
rm

al
st

re
ss

h2 σ zz

h=70 mm
h=56 mm
h=33 mm
elasticity ν=0.27
elasticity ν=0.5

Figure 3. Stress response at the bottom of gelatine layers of various thicknesses. The two elastic
profiles show the typical accessible range of shapes for the response of an isotropic layer of finite
thickness on a perfectly rough bottom. The Poisson coefficient ν = 0.27 gives the widest profile,
while ν = 0.5 gives the narrowest one [20].

We now turn to response functions obtained with different preparations of Fontainebleau
sand (d ∼ 300 µm). To date, we have tested granular assemblies using the four following
preparation methods: (i) a loose packing, (ii) a dense packing, both cases having the direction
of gravity as a symmetry axis [20], (iii) a sheared granular assembly and, (iv) a horizontal slab
prepared using successive avalanches [27]. We present in figures 4 and 5 cases (i), (ii) and (iii).
In all situations a linear elastic-like rescaling of the response with depth h was obtained—the
scaling here refers to the fact that elastic stress fields have the form σαβ = 1/z p f (x/z) (p = 2
in 3D, p = 1 in 2D).

Except for case (i), the predictions of isotropic elasticity are more or less inconsistent with
our experimental results. For instance, the dense packing prepared by successive compression
of deposited layers gives a response which is far too wide to be well fitted by such a model.
For preparations obtained either in a shearing box or by avalanches—cases (iii) and (iv)—a
shift of the response maximum with respect to the vertical direction below the applied force
is present. It directly attests to the presence of an anisotropic medium with a symmetry axis
other than the vertical direction. From all these data, as in 2D, we conclude the existence of a
macroscopic anisotropy induced by the pile preparation. A similar conclusion could be drawn
for 3D response function experiments [28, 29] or simulations and calculations performed on
highly symmetrical crystalline packings [13, 30–33].

Recently, there have been attempts to describe granular assemblies using orthotropic
elasticity [21, 27], where the direction of larger compression is taken as the stiff direction
and thus the main symmetry axis of the model. This approach can provide a good qualitative
account of all the experimental results, but the number of parameters involved is too high to
provide a decisive interpretation. Therefore, there is a crucial need to measure other quantities
based on the response function method, such as shear stresses or responses to a non-vertical
force as in [19]. This is also the object of a numerical study in the following section. A large
collection of these experimental data can provide severe tests of any proposed mechanical
modelling of granular assemblies under quasi-static deformation. We pursue this issue further
via a numerical study which we discuss in the following section.
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Figure 4. Response profiles for the vertical stress, σzz . The open circle data points were obtained
on dense, compressed layers of grains (a), while the filled ones are from rather loose packings (b).
We have plotted together data for layers whose thickness varies from h ∼ 30 to 60 mm. We observe
that the response function of a loose piling is much narrower than that of a compressed one. As for
figure 3, the range of elastic predictions is shown by the two profiles ν = 0.27 and 0.5.
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Figure 5. Response profile for the vertical stress σzz at the bottom of a sand layer which has been
uniformly sheared along the x axis. The different symbols are for layers of various thicknesses
(50–100 mm) and shear strains (2◦ and 5◦). The maximum of the profile is clearly shifted in the
direction of shear. Isotropic elasticity is not able to reproduce such an asymmetrical shape of the
profile with a vertical overload.

3. Numerical simulations

In order to complement the experimental data presented above, we performed extensive 2D
simulations of various grain packings obtained with different preparation methods. The control
of all the parameters of the simulations as well as the ability to measure both micro (grain size)
and macro (system size) quantities ensures a useful feedback to the experiments. In addition,
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a numerical approach allows an easier exploration of a larger range of preparation procedures.
Similar numerical studies have recently been carried out, either on granular packings [34, 35]
or on amorphous elastic bodies such as Lennard-Jones particles [36].

3.1. Simulation model and parameters

The system consists of a set of N polydisperse discs, with random radii homogeneously
distributed between Rmin and Rmax = 2Rmin. This system is simulated using a discrete element
method—molecular dynamics (MD) with a third-order predictor–corrector scheme [37]. The
rheology of contacts is that of Kelvin–Voigt. All grains interact via a linear elastic law and
Coulomb friction when they are in contact. The normal contact force fn is related to the
normal apparent interpenetration δ of the contact as fn = kn · δ, where kn is a normal stiffness
coefficient (δ > 0 if a contact is present, δ = 0 if there is no contact). Note that this linear
behaviour is consistent with Hertz’ law for discs. The tangential component ft of the contact
force is proportional to the tangential elastic relative displacement, with a tangential stiffness
coefficient kt. The Coulomb condition | ft| � µ fn requires an incremental evaluation of ft

every time step, which leads to some amount of slip each time one of the equalities ft = ±µ fn

is imposed. A normal viscous component opposing the relative normal motion of any pair
of grains in contact is also added to the elastic force fn to obtain a critical damping of the
dynamics. We chose a value µ = 0.5 for both the static and dynamic friction coefficients
between the grains. All grains can be considered as quite rigid, κ = kn/P = 1000, where κ is
a dimensionless parameter which expresses the level of contact deformation and where P is a
pressure related to the weight of grains assembly. The ratio kt/kn was set to 0.5 or 0.7 [38].
The bottom of the system is a horizontal line of similar but fixed grains, with intergranular
distances chosen in order to avoid grains escaping from the system. We use horizontally
periodic boundary conditions. Finally, we have carried out simulations on eight different
samples of N = 3600 particles.

We considered two different system preparations. The first is a rain-like (RL) procedure
where all grains are initially placed at the nodes of a 1 to 4 aspect ratio grid. When the
deposition starts, all the constraints are removed at the same time, letting the particles settle
down under gravity with random initial velocities. In the second preparation scheme, each
grain is deposited individually (grain by grain, or GG) with no initial velocity, by choosing a
random initial position in contact with a grain already present at the outer surface. The next
particle is deposited after 100 MD time steps if all grains already present have at least one
contact. The equilibrium criteria consist of the five following tests which are applied after each
period of 100 MD time steps: (1) the number of gained/lost contacts between particles during
this period is zero, (2) similarly, the number of sliding contacts is also zero, (3) the integrated
force measured at the bottom of the layer is equal to the sum of the weight of all the grains
within a minimal tolerance, (4) all the particles have formed at least two contacts, and (5) the
total kinetic energy is lower than some low threshold.

We then carried out a microscopic characterization of the deposited layers and computed
such quantities as the contact and force angle distributions. These are plotted in polar
representation in figure 6. It is striking to see the difference between the two plots: the first one
is close to a circle (quasi-isotropic distribution) whereas the second one shows four distinct
lobes. Similar features have been observed experimentally by Calvetti et al [39] on a Schneebeli
assembly [40] prepared using something like the GG procedure, and also by Radjai et al [41–
43] with discrete element method simulations (Contact Dynamics). In the same vein, Geng
et al [44] found that a raining procedure for building 2D heaps of photoelastic particles resulted
in more nearly axisymmetric distributions of contacts than did a point-source pouring method.
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Figure 6. Contact and force angle distribution for the rain-like (left) and grain-by-grain deposition
(right) procedures. Black lines are for the angles of contact whereas grey ones are for the orientation
of the forces—all angles are measures with respect to the horizontal axis. The circles are guidelines
indicating an isotropic distribution. The texture anisotropy of the grain-by-grain deposition is
striking. These statistics have been obtained over about 50 000 (RL) or 32 000 (GG) contact pairs,
and the bin width for each histogram corresponds to an angular interval of 5◦ .

Figure 7. Contact forces in response to an incremental small localized force at the top surface.
Lines are bolder for larger forces. Black (red/grey) lines indicate contacts where the force has
increased (decreased). The numerical results presented in this paper have been obtained with
assemblies of 3600 particles forming typical layers of aspect ratio 1 × 4, of 21 grains thickness,
and with horizontal periodic boundary conditions.

Interestingly, in these latter experiments, the underlying symmetry was hexagonal rather than
square. At the system size level, the difference is less impressive: we have computed the solid
fraction φ and found φRL = 0.820(2) and φGG = 0.812(4) respectively. The average numbers
of contacts per grain, Z , are also rather close: ZRL = 3.39(1) and ZGG = 3.517(8).

3.2. The response function

After the deposition procedure converges to a static equilibrium, which typically takes 106 MD
time steps, an additional force F0 localized on a single grain is added at the top of the layer.
Its value is typically of the order of a few times the weight of a grain. As we emphasize below,
F0 can be either vertical or inclined at a 45◦. This force is applied progressively over 104 MD
time steps, and we checked that this overloading does not lead to important rearrangements of
the packing. More precisely, no contacts are either broken or created, and the few observed
sliding events do not push the response out of a linear and reversible regime. Figure 7 shows
a map of the contact forces in response to this extra force—the force network before the
overloading was subtracted. In order to get the averaged stress response function, several tens
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Figure 8. Profiles for the vertical normal stress, σzz , in response to a vertical (left) or a 45◦ inclined
(right) top force. The two preparation procedures show distinct but qualitatively similar profiles.
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Figure 9. Shear stress σxz profiles in response to a vertical (left) or a 45◦ inclined (right) top force.
The difference between the two preparation procedures is much more visible than in the data for
σzz . In particular, the amplitude of the shear maximum is 10% larger for the more anisotropic case.

of such independent overloads were performed on assemblies of 3600 particles. The stress
componentsσzz and σxz are measured at the bottom of the system in the following manner. Like
the experimental pressure probe of size l, the stress component σαz at position x is obtained as
the sum over the α-components of the forces exerted on the bottom grains located at horizontal
distances between x − �/2 and x + �/2 from the overload point. This sum is divided by the
coarse graining length, �, and by the number of samples N . It is also normalized by the force
F0, yielding

σαz(x) = 1

N F0�

∑

x−�/2<ξ<x+�/2

Fα(ξ). (1)

We checked that this procedure yields results consistent with a more general definition of
the stress tensor σαβ [13, 22, 45–47]. Finally, we note that the stress components become
independent of the coarse graining length only when � is large enough compared to the mean
grain diameter d [47]. Here we used � ∼ 7.5d , which is about the crossover value.

Figures 8 and 9 show the different stress response profiles. They exhibit a single broad
peak. Although not shown here, and in accordance with the experimental data presented in the
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Figure 10. Comparison of the stress profiles with isotropic elasticity. The fit for both cases of a
vertical and an inclined overload F0 (left) is quite good. These plots are for the rain-like preparation
of the granular layer.
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Figure 11. Equivalent of figure 10 for the case of grain-by-grain preparation. Here, elastic
predictions of isotropic elasticity for both vertical and non-normal extra forces are much less good.

previous sections, these profiles also scale linearly with the layer thickness. The σzz profiles
measured from the RL or the GG procedures are distinct but close. Interestingly, the difference
between the two preparations is much more visible on the σxz plots. In particular, the amplitude
of the shear maximum is typically 10% larger in the more anisotropic case (GG).

3.3. Comparison with isotropic elasticity

As in the loose and dense cases of the previous section, both rain-like and grain-by-grain
preparations have the vertical axis as an axis of symmetry. It is not clear a priori that any
piling obtained under such conditions would ever be isotropic. From a microscopic point of
view, an inspection of the contact distribution (figure 6) suggests that the RL procedure is more
likely to yield an isotropic effective medium than the GG deposition procedure. The question
is how much are the texture properties reflected in macroscopic features. Here, we simply try
to adjust the stress response functions predicted by isotropic elasticity, and we seek to identify
which features of these functions would be most sensitive for identifying a departure from
isotropy.
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In the same vein as the experiments discussed above, [20], we performed fits of the
numerical profiles by minimizing the quadratic distance between the data and the theoretical
predictions, including the weight of the uncertainties. Recall that the fitting parameter is the
Poisson coefficient ν. As shown in figure 10, the RL profiles can be well reproduced with
ν = 0.28(2) (best fit) when the extra force F0 is vertical. This value of the Poisson ratio
also fits well the stresses in response to an overload inclined at 45◦. In the case of the GG
preparation (figure 11), the best fit of the stress responses to a vertical F0 (ν = 0.25(2)) is not
as well adjusted to the numerical data. The discrepancy between isotropic elasticity and the
GG data is also clearly visible for the inclined F0 situation. Using a range of directions for the
applied extra force provides a good test to identify a medium showing weak anisotropy such
as occurs for preparations under gravity.

4. Discussion and conclusion

Here we presented a summary of recent results based on the measurement of stress responses
to localized forces. These results are basically consistent with an elastic description. We
have shown experimentally for 2D model granular assemblies and for 3D sand piles that the
response function is a useful probe of constitutive properties of the granular material. Indeed,
this type of probe is a non-intrusive method that could replace or supplement standard acoustic
techniques, since it is well adapted to weakly cohesive material under low confining pressures
where sound propagation methods are more difficult to implement.

We have shown that the response function is sensitive to small differences in the preparation
history and also that its shape may change significantly after a quasi-static deformation. Using
numerical simulations, we associate these macroscopic differences to different microscopic
features which appear in the angular distribution of contacts. Nevertheless, exactly how these
features would quantitatively emerge at the macroscopic level and how they are likely to change
due to an external loading path are still challenging and unanswered questions.

Finally, we propose a new path of systematic measurements where the normal and shear
stress profiles are obtained for various directions of the applied localized force. A collection
of such data would yield crucial information on the structure evolution for a given loading
history and, therefore, provide a severe test of any model such as anisotropic elasticity models.
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